Linear $v s$. bent $\mathrm{M}-\mathrm{O}-\mathrm{R}$ bonds in d^{0} metal alkoxides: X-ray crystal structure of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ta}\left(\mathrm{S}^{\mathrm{t}} \mathrm{Bu}\right){ }_{3}\left(\mathrm{O}^{\mathrm{n}} \mathrm{Bu}\right)$ and EHMO analysis

Kazuyuki Tatsumi and Akitoshi Tahara
Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560 (Japan)

Akira Nakamura
Department of Macromolecular Science, Faculty of Science, Osaka University, Toyonaka, Osaka 560 (Japan)

(Received September 1, 1993; in revised form October 20, 1993)

Abstract

The tantalum n-butoxide complex of $\mathrm{Cp}{ }^{*} \mathrm{Ta}\left(\mathbf{S}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\left(\mathrm{O}^{\mathrm{n}} \mathrm{Bu}\right)(1)\left(\mathrm{Cp}^{*}=\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ has been isolated as a minor product from the reaction of $\mathrm{Cp}^{*} \mathrm{TaCl}_{4}$ with $\mathrm{Li}^{\mathbf{1}} \mathrm{Bu}$ in THF. The crystal structure of 1 consists of two crystallographically independent molecules with distinctly different $\mathrm{Ta}-\mathrm{O}-\mathrm{C}$ angles, where a larger angle is associated with a longer Ta - O bond and vice versa. EHMO calculations on the model $\mathrm{CpTa}(\mathrm{SH})_{3}(\mathrm{OH})$ showed that the potential energy curve against the $\mathrm{Ta}-\mathrm{O}-\mathrm{H}$ angle is in fact flat while the Ta-O overlap population decreases as the Ta-O-H bond bends. Crystallographic data: 1, space group $P 2_{1}, a=9.134(4)$, $b=12.078(7), c=27.74(2) \AA, \beta=92.39(6)^{\circ} ; Z=4 ; 4515$ reflections with $I>3.0 \sigma(I) ; R=0.038, R_{w}=0.052$.

Key words: Tantalum; Thiolate; Alkoxide; X-ray diffraction; Molecular orbital calculations

1. Introduction

Alkoxides and aryloxides are known to coordinate at electron-deficient early transition metals with varying amounts of M-O multiple bond character, as is manifested by a wide range of $\mathrm{M}-\mathrm{O}-\mathrm{R}$ angles and relatively short M-O distances [1-5]. There is no doubt that the $\mathrm{O} \mathrm{p} \pi$ orbitals of alkoxide and aryloxides can donate electrons to a metal whenever a vacant $\mathrm{d} \pi$ orbital of the same symmetry is present. But to what extent does it do so? How significant is the effect of $\mathrm{p} \pi-\mathrm{d} \pi$ interactions on large M-O-R angles? Early transition metal alkoxides and aryloxides often carry bulky substituents and their steric pressure alone could result in large $\mathrm{M}-\mathrm{O}-\mathrm{R}$ angles, making it difficult to isolate the contribution of $\mathrm{p} \pi-\mathrm{d} \pi$ interactions from the steric effect.

In the course of our study of sulfide and thiolate complexes comprising a half-sandwich $\mathrm{Cp}^{*} \mathrm{Ta}$ fragment

[^0][6,7], we have isolated $\mathrm{Cp}^{*} \mathrm{Ta}\left(\mathrm{S}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\left(\mathrm{O}^{\mathrm{n}} \mathrm{Bu}\right)(1)$ as a minor product of the reaction between $\mathrm{Cp}^{*} \mathrm{TaCl}_{4}$ and $\mathrm{LiS}^{\prime} \mathrm{Bu}$ in THF. An interesting aspect of 1 is that the complex crystallizes with two independent molecules in each asymmetric unit; one with a large $\mathrm{Ta}-\mathrm{O}-\mathrm{C}$ angle and the other with a smaller angle. This finding provided us with a good opportunity to examine electronic properties of the alkoxide ligand at a d^{0} metal centre. We report in this paper the crystal structure of 1 , focussing on the coordination geometry of the n-butoxy group, with a molecular orbital analysis based on extended Hückel calculations.

2. Experimental section

All manipulations were carried out under an argon atmosphere using dry solvents and conventional Schlenk techniques. 'BuSH was used as purchased (Aldrich) and its lithium salt was prepared by adding butyllithium to ${ }^{\text {t BuSH }}$ in THF and isolated in a straightforward manner as a white powder. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a JEOL GX-270 spectrome-
ter, and UV-visible spectra were run on a Jasco Ubest30 spectrometer.

Our investigation of reactions between $\mathrm{Cp}^{*} \mathrm{TaCl}_{4}$ and varying amounts of $\mathrm{LiS}^{1} \mathrm{Bu}$ in THF resulted in a successful isolation of $\mathrm{Cp}^{\star} \mathrm{Ta}\left(\mathrm{S}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{Cl}_{2}\right.$ (red), Cp^{*} $\mathrm{Ta}\left(\mathrm{S}^{\mathrm{t}} \mathrm{Bu}\right)_{3} \mathrm{Cl}$ (red brown), and $\mathrm{Cp}^{\star} \mathrm{TaS}\left(\mathrm{S}^{\mathrm{t}} \mathrm{Bu}\right)_{2}$ (yellow) [8]. During this study we noticed formation of red crystals in a $(1: 6) \mathrm{Cp}^{*} \mathrm{TaCl}_{4}: \mathrm{LiS}^{\mathrm{t}} \mathrm{Bu}$ reaction system, subsequently shown to be 1 . The yield of $\mathbf{1}$ varies from a trace amount to 5% according to the ${ }^{1} \mathrm{H}$ NMR spectra of the crude product, while the major product isolated is $\mathrm{Cp}^{\star} \mathrm{TaS}\left(\mathrm{S}^{\mathrm{t}} \mathrm{Bu}\right)_{2}$ ($50-60 \%$ yield). The n butoxy group might be contained as a trace amount of impurity in butyllithium used for preparation of $\mathrm{LiS}^{\mathrm{t}} \mathrm{Bu}$, or might originate from THF via a ring-opening step. While we are continuing our efforts, we have not been able to develop a rational synthesis of 1 . Isolation of 1 from the reaction of $\mathrm{Cp}^{\star} \mathrm{Ta}\left(\mathrm{S}^{\mathrm{t}} \mathrm{Bu}\right)_{3} \mathrm{Cl}$ with $\mathrm{LiO}^{\mathrm{n}} \mathrm{Bu}$ has not been successful.
2.1. Characterization of $\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ta}\left(\mathrm{S}^{t} \mathrm{Bu}\right)_{3}\left(\mathrm{O}^{n} \mathrm{Bu}\right)$ (1)
${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 30^{\circ} \mathrm{C}$): $\delta 0.96(\mathrm{t}, 3 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.25\left(\mathrm{~m}, 2 \mathrm{H}, \quad \mathrm{OCH}_{2} \mathrm{CH}_{2}-\right.$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.84 (s, $9 \mathrm{H}, \mathrm{S}^{\mathrm{t}} \mathrm{Bu}$), 1.85 ($\mathrm{s}, 18 \mathrm{H}, \mathrm{S}^{\mathrm{t}} \mathrm{Bu}$), 1.88 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.10\left(15 \mathrm{H}, \mathrm{Cp}^{*}\right.$), 4.63 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$). UV/Vis ($\lambda_{\text {max }}(\epsilon)$, THF): nm 484sh, $381(3000)$. Anal. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{51} \mathrm{OS}_{3} \mathrm{Ta}$: C, 47.54; H, 7.83; S, 14.64. Found: C, 46.92; H, 7.80; S, 13.72%.

2.2. X-ray structure analysis of 1

A single crystal of 1 was mounted in a thin-walled glass capillary and sealed under Ar. Diffraction measurements were made on a Rigaku AFC5R fully automated four-circle diffractometer using graphite-monochromated Mo $\mathrm{K} \alpha$ radiation. The cell dimensions were determined and refined from 20 randomly selected reflections. The intensity data were collected using the ω scan technique up to a maximum 2θ value of 50°. The intensity measurements were corrected for Lorentz and polarization effects, and an empirical absorption correction was applied with use of azimuthal scans. Inspection of the systematic absences indicated possible space groups $P 2_{1}$ and $P 2_{1} / m$. The mean $\mathrm{E}^{2}-1$ value and packing considerations suggested noncentric $P 2_{1}$, and the successful solution and refinement of the structure support the choice as the correct space group. The structure was solved by a combination of direct methods (mithril) and different Fourier synthesis. All non-hydrogen atoms were assigned anisotropic thermal parameters, and hydrogen atoms were included in the structure factor calculations. The structure was refined to $R=0.038$ and $R_{w}=0.052$ by a full-matrix leastsquares refinement using 4515 reflections with $I>$

TABLE 1. Crystal data for $\mathrm{Cp}^{\star} \mathrm{Ta}\left(\mathrm{S}^{\dagger} \mathrm{Bu}\right)_{3}\left(\mathrm{O}^{\mathrm{n}} \mathrm{Bu}\right)$ (1)

formula	$\mathrm{C}_{26} \mathrm{H}_{51} \mathrm{OS}_{3} \mathrm{Ta}$
fw	656.8
space group	$P 2_{1}$
a, \AA	$9.134(4)$
b, \AA	$12.078(7)$
c, \AA	$27.74(2)$
β, deg	$92.39(6)$
V, \AA^{3}	$3058(3)$
Z	4
$\rho_{\text {calcd }}, \mathrm{g} / \mathrm{cm}^{3}$	1.43
$\mu, \mathrm{~cm}^{-1}$	37.6
radiation	Mo K
α	

$3 \sigma(I)$. Crystal data are summarized in Table 1, and the positional and isotropic thermal parameters are given in Table 2. Additional data, including full experimental details, and complete listings of atomic and thermal parameters, tables of observed and calculated structure factors are available on request from the authors.

3. Results and discussion

Figure 1 presents the structure of one of the two independent molecules (molecule A), while selected bond distances and angles for the molecules A and B are listed in Table 3. The four-legged piano-stool geometry is distorted in such a way that the two smaller Cp^{*} (centroid)- $\mathrm{Ta}-\mathrm{S}$ angles are associated with the two trans thiolate ligands: molecule A (molecule B); Cp^{*} -$\mathrm{Ta}-\mathrm{Sl}(\mathrm{S} 4), \quad 102.9(2)^{\circ}\left(102.0(3)^{\circ}\right) ; \mathrm{Cp}^{*}-\mathrm{Ta}-\mathrm{S} 3(\mathrm{~S} 6)$, $104.0(2)^{\circ}\left(102.7(3)^{\circ}\right)$. The other two basal ligands are bent away from $\mathrm{Cp}^{*}: \mathrm{Cp}^{*}-\mathrm{Ta}-\mathrm{S} 2(\mathrm{~S} 5), 112.7(2)^{\circ}$ (117.1(2) ${ }^{\circ}$); $\mathrm{Cp}^{*}-\mathrm{Ta}-\mathrm{Ol}(\mathrm{O} 2), 115.0(3)^{\circ}\left(114.7(3)^{\circ}\right)$. This type of deformation was described as "angular trans influence" [9], and its detailed theoretical analysis has recently been reported [10]. Orientation of the ${ }^{\mathrm{t}} \mathrm{Bu}$ groups is variegated, where the $\mathrm{Cp}^{*}-\mathrm{Ta}-\mathrm{S}-\mathrm{C}$ torsional angles range from $86.7(5)^{\circ}$ for $\mathrm{Cp}^{*}-\mathrm{Ta} 2-\mathrm{S} 5-\mathrm{C} 45$ to $178.1(6)^{\circ}$ for $\mathrm{Cp}^{*}-\mathrm{Ta} 2-\mathrm{S} 4-\mathrm{C} 41$. The ${ }^{\mathrm{n}} \mathrm{Bu}$ group of alkoxide ligand is oriented perpendicular to the $\mathrm{Cp}^{*}-\mathrm{Ta}$ vector ($\mathrm{Cp}^{*}-\mathrm{Ta}-\mathrm{O}-\mathrm{C}$ torsional angles of $96(1)^{\circ}$ and $92(2)^{\circ}$ for molecule A and molecule B, respectively). The Ta-S distances and the $\mathrm{Ta}-\mathrm{S}-\mathrm{C}$ angles are normal [11].

By comparing the structural parameters between the two crystallographically independent molecules, we see that the angles at O 1 and O 2 are quite different: $\mathrm{Ta} 1-\mathrm{O} 1-\mathrm{C} 23$ angle of $133.2(7)^{\circ} \mathrm{us}$. $\mathrm{Ta} 2-\mathrm{O} 2-\mathrm{C} 53$ angle of $159.6(7)^{\circ}$. Interestingly the large $\mathrm{Ta} 2-\mathrm{O} 2-\mathrm{C} 53$ angle

Fig. 1. Structure of molecule A in 1 shown with 50% probability ellipsoids.
of molecule B accompanies the short $\mathrm{Ta}-\mathrm{O} 2$ bond, which is shorter than the Ta1-O1 bond of molecule A by $0.063(7) \AA$. This observation provides direct evidence that widening of the $\mathrm{Ta}-\mathrm{O}-\mathrm{C}$ angle in fact strengthens the Ta-O bond. The presence of the two distinctive alkoxide coordination geometries in the same crystals indicates that their energy difference must be small and that shortening of the $\mathrm{Ta}-\mathrm{O}$ bond does not contribute much to further stabilization of the complex.

In order to gain a deeper insight into the $\mathrm{Ta}-\mathrm{O}$ bonding, we carried out extended Hückel calculations on the model complex, $\mathrm{CpTa}(\mathrm{SH})_{3}(\mathrm{OH})$ [12*]. All the alkyl substituents in complex 1 were replaced by hydrogen atoms to avoid complication arising from steric influence. Orientations of the thiolate H and hydroxy H atoms were idealized in such a way that the $\mathrm{Cp}-\mathrm{Ta}-$ $\mathrm{O}-\mathrm{H}$ and $\mathrm{Cp}-\mathrm{Ta}-\mathrm{S} 2-\mathrm{H}$ torsional angles are 90° (latitudinal orientation) and the $\mathrm{Cp}-\mathrm{Ta}-\mathrm{S} 1-\mathrm{H}$ and $\mathrm{Cp}-$ $\mathrm{Ta}-\mathrm{S} 3-\mathrm{H}$ angles are 180° (longitudinal orientation). This conformation resembles roughly the observed structure of 1 , and is analogous to the geometry identified by Curtis et al. in calculations on $\mathrm{CpTa}(\mathrm{SH})_{4}$ [13].

The angular trans influence in $\mathrm{CpTa}(\mathrm{SH})_{3}(\mathrm{OH})$ could give rise to two different deformed geometries depending on whether the OH group and its trans-SH partner move to the position with a large $\mathrm{Cp}-\mathrm{Ta}-\mathrm{L}$ angle (deformation X), that corresponds to the structure of 1 , or to the position with a small $\mathrm{Cp}-\mathrm{Ta}-\mathrm{L}$

[^1]angle (deformation \mathbf{Y}). The geometrical choice may be affected by the orientation of the OH group. For the

deformation \mathbf{Y}
deformation X
latitudinal orientation, the $\mathrm{Op} \pi$ orbital overlaps with the metal z^{2} orbital, and larger $\mathrm{Cp}-\mathrm{Ta}-\mathrm{OH}$ angles would result in stronger $\mathrm{p} \pi-z^{2}$ interactions. Conversely the longitudinal orientation is suited for the O $\mathrm{p} \pi-\mathrm{xy}$ interaction, and smaller $\mathrm{Cp}-\mathrm{Ta}-\mathrm{OH}$ angles would be preferred. These $\mathrm{p} \pi-\mathrm{d} \pi$ interactions are schematically shown below.

latitudinal- OH
longitudinal-OH

TABLE 2. Fractional atomic coordinates and equivalent isotropic thermal parameters of non-hydrogen atoms in $\mathrm{Cp}^{*} \mathrm{Ta}\left(\mathrm{S}^{t} \mathrm{Bu}\right)_{3}\left(\mathrm{O}^{n} \mathrm{Bu}\right)$ (1) with esd's in parentheses

	\boldsymbol{x}	y	z	$B_{\text {eq }}$
Ta1	$0.13331(5)$	0	$0.12272(1)$	3.15(2)
Ta2	$0.13405(5)$	0.02297(3)	$0.62284(1)$	3.13(2)
S1	0.1456(3)	-0.1980(2)	0.1403 (1)	4.5(1)
S2	0.2861(3)	-0.0699(3)	0.0592(1)	4.2(1)
S3	0.2455(3)	$0.1850(2)$	0.1122(1)	4.3(1)
S4	0.1413(3)	0.2284(2)	0.6350(1)	3.9(1)
S5	$0.2941(4)$	0.0911(2)	0.5609(1)	4.1(1)
S6	0.2402(3)	-0.1603(2)	0.61497(9)	3.7(1)
O1	0.174(1)	$0.0298(6)$	0.1899(3)	4.2(4)
O 2	$0.1748(8)$	0.0212(5)	$0.6889(2)$	3.4(3)
C1	-0.059(1)	$0.1144(8)$	$0.0802(4)$	3.6(5)
C2	-0.106(1)	0.0982(8)	$0.1264(3)$	3.44)
C3	-0.124(1)	$0.0230(8)$	$0.1346(4)$	3.1 (5)
C4	-0.111(1)	-0.0743(9)	0.0896 (3)	4.2(4)
C5	-0.078(1)	$0.0010(8)$	$0.0595(4)$	3.1(4)
C6	-0.058(1)	$0.217(1)$	0.0557(5)	4.0(7)
C7	-0.123(1)	0.186(1)	$0.1634(5)$	4.56)
C8	-0.178(2)	-0.074(1)	0.1790(5)	$7.5(8)$
C9	-0.158(1)	-0.189(1)	0.0863(4)	4.8(6)
C10	-0.056(2)	$-0.019(1)$	0.0069(5)	6.4(7)
C11	0.323(1)	-0.274(1)	$0.1505(4)$	3.8(5)
C12	$0.337(1)$	-0.350(1)	0.1074(4)	4.7(6)
C13	0.293(2)	-0.354(1)	0.1911(5)	8.8(9)
C14	0.444(1)	-0.195(1)	$0.1614(5)$	6.6(7)
C15	0.405(1)	0.018(1)	0.0250(3)	4.3(5)
C16	0.317(2)	0.097(1)	-0.0049(5)	5.9(7)
C17	0.551(1)	0.063(1)	0.0479(5)	5.1(6)
C18	$0.443(2)$	-0.070(1)	-0.0161(5)	$7.5(8)$
C19	$0.377(1)$	0.223 (1)	$0.1575(4)$	3.16)
C20	0.486(1)	0.142(1)	0.1774(4)	4.7(5)
C21	0.291(1)	0.281(1)	$0.2025(4)$	6.4(6)
C22	0.481(1)	0.318(1)	0.1440(4)	5.3 (6)
C23	0.184(2)	-0.043(1)	0.2339(5)	5.0(7)
C24	0.139(2)	0.0200(9)	0.2750(4)	4.7(5)
C25	0.143(2)	-0.039(1)	$0.3256(4)$	4.66)
C26	0.102(3)	$0.019(1)$	$0.3636(6)$	8(1)
C31	-0.065(1)	-0.084(1)	$0.5759(4)$	3.8(5)
C32	-0.092(1)	-0.074(1)	0.6354(3)	3.8(4)
C33	-0.132(1)	$0.0329(9)$	$0.6423(4)$	3.0(4)
C34	-0.113(1)	$0.0940(8)$	$0.5992(4)$	4.3(4)
C35	-0.063(1)	$0.0101(8)$	0.5555(4)	3.2(5)
C36	0.044(2)	-0.193(1)	0.5525(5)	4.4(7)
C37	-0.101(1)	-0.172(1)	$0.6673(5)$	5.56)
C38	-0.167(1)	0.085(1)	$0.6829(4)$	4.7(5)
C39	-0.165(2)	0.211(1)	$0.5775(5)$	6.1(8)
C40	-0.064(1)	$0.038(1)$	$0.5057(4)$	5.3 (6)
C41	$0.318(2)$	0.297(1)	$0.6522(5)$	4.9(7)
C42	0.454(1)	0.217(1)	$0.6660(5)$	5.66)
C43	$0.296(1)$	$0.367(1)$	0.6954(5)	6.5(6)
C44	$0.368(2)$	0.358(1)	$0.6134(6)$	7.5(8)
C45	0.401(1)	0.0074(9)	0.5145(3)	3.8(5)
C46	0.311(1)	-0.090(1)	0.4925(4)	$4.5(6)$
C47	$0.466(2)$	$0.091(1)$	0.4787(4)	6.067
C48	0.510(1)	-0.043(1)	$0.5435(4)$	4.06)
C49	0.383(1)	-0.202(1)	$0.6636(5)$	4.1(7)
C50	0.454(2)	-0.296(1)	$0.6345(5)$	7.8(9)
C51	0.314(1)	-0.236(1)	0.7042(4)	8.2(7)
C52	0.487(1)	$0.090(1)$	0.6761(5)	$6.277)$
C53	$0.197(2)$	0.061(1)	$0.7376(4)$	$4.56)$

TABLE 2 (continued)

C54	$0.127(2)$	$-0.003(1)$	$0.7741(6)$	$7(1)$
C55	$0.161(2)$	$0.068(1)$	$0.8231(5)$	$9(1)$
C56	$0.126(3)$	$0.008(1)$	$0.8647(5)$	$8(1)$

However, Lin and Hall [10] predicted that smaller $\mathrm{Cp}-\mathrm{M}-\mathrm{L}$ angles should be associated with strong σ bonding ligands, and deformation Y could be more stable as the OH group is a better σ-donor than SH. Thus the latitudinal orientation of OH stabilizes deformation X , while the strong σ-donor nature of OH opts for deformation Y. A consequence of these two opposing effects may be a small energy difference between the two deformed geometries. In fact, our calculations on the model $\mathrm{CpTa}(\mathrm{SH})_{3}(\mathrm{OH})$ show that the two deformations are energetically balanced, with deformation $\mathrm{X}\left(\mathrm{Cp}-\mathrm{Ta}-\mathrm{O}=\mathrm{Cp}-\mathrm{Ta}-\mathrm{S} 2=115^{\circ}, \mathrm{Cp}-\mathrm{Ta}-\mathrm{S} 1=\right.$ $\mathrm{Cp}-\mathrm{Ta}-\mathrm{S} 3=103^{\circ}$) being very slightly less stable (by 0.03 eV) than deformation $\mathrm{Y}(\mathrm{Cp}-\mathrm{Ta}-\mathrm{O}=\mathrm{Cp}-\mathrm{Ta}-\mathrm{S} 2$ $=103^{\circ}, \mathrm{Cp}-\mathrm{Ta}-\mathrm{S} 1=\mathrm{Cp}-\mathrm{Ta}-\mathrm{S} 3=115^{\circ}$. We think that the observed structure of $\mathbf{1}$ is determined mainly by the

Fig. 2. Potential energy curve and change in the $\mathrm{Ta}-\mathrm{O}$ overlap population $\mathrm{P}(\mathrm{Ta}-\mathrm{O})$ for $\mathrm{CpTa}(\mathrm{SH})_{3}(\mathrm{OH})$, varying the $\mathrm{Ta}-\mathrm{O}-\mathrm{H}$ angle α.

TABLE 3. Selected bond distances ($\AA \mathrm{A}$) and bond angles (deg) for $\mathrm{Cp}{ }^{*} \mathrm{Ta}\left(\mathbf{S}^{\mathrm{t}} \mathrm{Bu}\right)_{3}\left(\mathrm{O}^{\mathrm{n}} \mathrm{Bu}\right)(1)$ with esd's in parentheses

molecule A			
Ta1-S1	$2.442(3)$	$\mathrm{S} 1-\mathrm{Ta} 1-\mathrm{S} 2$	$77.4(1)$
Ta1-S2	$2.445(3)$	$\mathrm{S} 1-\mathrm{Ta} 1-\mathrm{S} 3$	$152.8(1)$
TaI-S3	$2.480(3)$	$\mathrm{S} 2-\mathrm{Ta} 1-\mathrm{S} 3$	$88.6(1)$
$\mathrm{Ta} 1-\mathrm{O} 1$	$1.919(7)$	$\mathrm{S} 1-\mathrm{Ta} 1-\mathrm{O} 1$	$89.1(2)$
$\mathrm{S} 1-\mathrm{C} 11$	$1.87(1)$	$\mathrm{S} 2-\mathrm{Ta} 1-\mathrm{O} 1$	$132.3(3)$
S2-C15	$1.81(1)$	$\mathrm{S} 3-\mathrm{Ta} 1-\mathrm{O} 1$	$83.2(2)$
S3-C19	$1.76(1)$	$\mathrm{Tal-S} 1-\mathrm{C} 11$	$122.9(4)$
O1-C23	$1.50(2)$	$\mathrm{Ta} 1-\mathrm{S} 2-\mathrm{C} 15$	$123.1(4)$
		$\mathrm{Ta} 1-\mathrm{S} 3-\mathrm{C} 19$	$115.0(4)$
		$\mathrm{Ta} 1-\mathrm{O} 1-\mathrm{C} 23$	$133.2(7)$
molecule B			
Ta2-S4	$2.504(3)$	$\mathrm{S} 4-\mathrm{Ta} 2-\mathrm{S} 5$	$75.4(1)$
Ta2-S5	$2.444(3)$	$\mathrm{S} 4-\mathrm{Ta} 2-\mathrm{S} 6$	$155.0(1)$
Ta2-S6	$2.430(3)$	$\mathrm{S} 5-\mathrm{Ta} 2-\mathrm{S} 6$	$89.5(1)$
Ta2-O2	$1.856(6)$	$\mathrm{S} 4-\mathrm{Ta} 2-\mathrm{O} 2$	$82.8(2)$
$\mathrm{S} 4-\mathrm{C} 41$	$1.85(1)$	$\mathrm{S} 5-\mathrm{Ta} 2-\mathrm{O} 2$	$126.6(2)$
$\mathrm{S} 5-\mathrm{C} 45$	$1.94(1)$	$\mathrm{S} 6-\mathrm{Ta} 2-\mathrm{O} 2$	$90.8(2)$
$\mathrm{S} 6-\mathrm{C} 49$	$1.91(1)$	$\mathrm{Ta} 2-\mathrm{S} 4-\mathrm{C} 41$	$119.6(4)$
$\mathrm{O} 2-\mathrm{C} 53$	$1.44(1)$	$\mathrm{Ta} 2-\mathrm{S} 5-\mathrm{C} 45$	$128.8(3)$
		$\mathrm{Ta} 2-\mathrm{S} 6-\mathrm{C} 49$	$116.2(4)$
		$\mathrm{Ta} 2-\mathrm{O} 2-\mathrm{C} 53$	$159.6(7)$

steric bulk of the ${ }^{\mathrm{t}} \mathrm{Bu}$ group. The two bulky ${ }^{\mathrm{t}} \mathrm{Bu}$ substituents of the thiolates trans to each other tend to bend down (ie., a longitudinal orientation for $\mathrm{S} 2-^{\mathrm{t}} \mathrm{Bu}$ and $\mathrm{S} 4-{ }^{\mathrm{t}} \mathrm{Bu}$), minimizing their steric repulsion with the $\mathrm{S}-^{-}{ }^{\mathrm{B}} \mathrm{Bu}$ group and also with Cp^{*}. This in turn leads to the latitudinal orientation of $\mathrm{O}^{\mathrm{n}}-\mathrm{Bu}$ and $\mathrm{S} 3-{ }^{\mathrm{t}} \mathrm{Bu}$.

To examine how the total energy and the $\mathrm{Ta}-\mathrm{O}$ interaction change with bending of the $\mathrm{Ta}-\mathrm{O}-\mathrm{H}$ bond, we plot in Fig. 2 the potential energy curve and the $\mathrm{Ta}-\mathrm{O}$ overlap population, $\mathrm{P}(\mathrm{Ta}-\mathrm{O})$, as a function of the $\mathrm{Ta}-\mathrm{O}-\mathrm{H}$ angle α. It is evident that $\mathrm{P}(\mathrm{Ta}-\mathrm{O})$ decreases as the OH group bends. Weakening of the $\mathrm{Ta}-\mathrm{O}$ bond for smaller α is indeed what we found in the structures of the two crystallographically independent molecules A and B for 1. The calculated potential energy curve is flat, where a shallow minimum comes at the linear Ta-O-H geometry. Bending from $\alpha=$ 180° to $\alpha=133^{\circ}$ costs an energy of moderate 0.23 eV , and the energy difference between $\alpha=160^{\circ}$ and $\alpha=$ 133° is 0.19 eV . This feature means that a variety of $\mathrm{Ta}-\mathrm{O}-\mathrm{H}$ angles is likely to occur in crystals through packing effects and/or steric interactions within
molecules, and this argument can apply to other M-$O-R$ bonds with a d^{0} electronic configuration.

References and notes

1 (a) B.D. Murray and P.P. Power, J. Am. Chem. Soc., 106 (1984) 701 1; (b) B.D. Murray, H. Hope and P.P. Power, J. Am. Chem. Soc., 107 (1985) 169.
2 (a) T.W. Coffindaffer, I.P. Rothwell and J.C. Huffman, Inorg. Chem., 22 (1983) 2906; (b) S.L. Latesky, A.K. McMullen, G.P. Niccolai and I.P. Rothwell, Organometallics 4 (1985) 902; (c) L.D. Durfee, S.L. Latesky, I.P. Rothwell, J.C. Huffman and K. Folting, Inorg. Chem., 24 (1985) 4569; (d) I.R. Chamberlain, I.P. Rothwell, K. Folting and J.C. Huffman, J. Chem. Soc., Dalton Trans., (1987) 155; (e) I.P. Rothwell, Acc. Chem. Res., 21 (1988) 153, and references therein.
3 (a) T.V. Lubben, P.T. Wolczanski and G.D. Van Duyne, Organometallics, 3 (1984) 977; (b) T.V. Lubben and P.T. Wolczanski, J. Am. Chem. Soc., 109 (1987) 424; (c) D.R. Neithamer, L. Párkányi, J.F. Mitchell and P.T. Wolczanski, J. Am. Chem. Soc., 110 (1988) 4421.
4 N. Kanehisa, Y. Kai, N. Kasai, H. Yasuda, U. Nakayama, K. Takei and A. Nakamura, Chem. Lett., (1990) 2167.
5 J.L. Hubbard and W.K. McVicar, Inorg. Chem., 31 (1992) 910, and references therein.
6 (a) K. Tatsumi, J. Takeda, Y. Sekiguchi, M. Kohsaka and A. Nakamura, Angew. Chem., Int. Ed. Engl., 24 (1985) 332; (b) K. Tatsumi, Y. Inoue and A. Nakamura, J. Organomet. Chem., 444 (1993) C25; (c) A. Nakamura, N. Ueyama and K. Tatsumi, Pure Appl. Chem., 62 (1990) 1011.
7 (a) K. Tatsumi, Y. Inoue, A. Nakamura, R.E. Cramer, W. VanDoorne and J.W. Gilje, J. Am. Chem. Soc., 111 (1989) 782; (b) K. Tatsumi, Y. Inoue, H. Kawaguchi, M. Kohsaka, A. Nakamura, R.E. Cramer, W. VanDoorne, G.J. Taogoshi and P.N. Richmann, Organometallics, 12 (1993) 352; (c) K. Tatsumi, H. Kawaguchi, Y. Inoue, A. Nakamura, R.E. Cramer and J.A. Golen, Angew. Chem., Int. Ed. Engl., 32 (1993) 763.
8 K. Tatsumi, A. Tahara, H. Kawaguchi, A. Morita and K. Tani, manuscript in preparation.
9 R. Poli, Organometallics, 9 (1990) 1892.
10 Z. Lin and M.B. Hall, Organometallics, 12 (1993) 19.
11 (a) J.L. Martin and J. Takats, Inorg. Chem., 14 (1975) 1358; (b) R.R. Schrock, M. Wesolek, A.H. Liu, K.C. Wallace and J.C. Dewan, Inorg. Chem. 27 (1988) 2050; (c) K. Tatsumi, I. Matsubara, Y. Inoue, A. Nakamura, K. Miki and N. Kasai, J. Am. Chem. Soc., 111 (1989) 7766; (d) S.-M Koo, R. Bergero, A. Salifoglou and D. Coucouvanis, Inorg. Chem., 29 (1990) 4844; (e) See ref 13.
12 The extended Hückel parameters for Ta were taken from ref 11c. Geometrical parameters not given in the text include $\mathrm{C}-\mathrm{C}=$ $1.40 \AA, \mathrm{O}-\mathrm{H}=1.09 \AA, \mathrm{Ta}-\mathrm{S}=2.46 \AA, \mathrm{Ta}-\mathrm{O}=1.89 \AA, \mathrm{~S}-\mathrm{C}=$ $1.86 \AA, \mathrm{O}-\mathrm{C}=1.47 \AA$, and $\mathrm{Cp}($ centroid $)-\mathrm{Ta}=2.16 \AA$.
13 O.J. Curnow, M.D. Curtis, A. Rheingold and B.S. Haggerty, Inorg. Chem., 30 (1991) 4043.

[^0]: Correspondence to Professor K. Tatsumi.

[^1]: * Reference number with asterisk indicates a note in the list of references.

